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Abstract

Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel 

exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in 

the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and 

CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats 

were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at 

various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained 

inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from 

Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory 

cytokines IL-12 and IFN-γ respectively. However, only DEP enhanced the anti-inflammatory 

cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not 

affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by 

inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in 

DEP + CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous 

throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen 

in the lung tissue after DEP + CeO2 reflects the combination of DEP-exposure plus CeO2-

exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced 

lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly 

affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst 

may cause health concerns.
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Introduction

Cerium, a member of the lanthanide series of metals, is the most abundant of the rare-earth 

elements in the Earth’s crust (average concentration of 50 ppm) (Hedrick, 2004). Cerium 

oxide has been used commercially in polishing agents, television tubes, and precision optics 

and it is also applied in various consumer products including semiconductors (EPA, 2009). 

Recently cerium oxide has been used as a fuel borne catalyst in combination with a 

particulate filter in diesel engines to enhance combustion by reducing the ignition 

temperature of the carbonaceous particulate on the filter; thus, improving fuel burning 

efficiency and substantially decreasing particle mass in the exhaust. Recent studies 

demonstrated that cerium was generated in the diesel exhaust from an engine using standard 

diesel fuel spiked with either cerium oxide or suspension of “Envirox” (Cassee et al., 2012).

Diesel exhaust particles (DEPs) are carbon-based particles containing various organic 

compounds, including polycyclic aromatic hydrocarbons and nitroaromatic compounds 

adsorbed onto the carbonaceous core (Schuetzle, 1983; Schuetzle et al., 1981). Diesel 

exhaust is a complex and variable mixture of gases, vapors, and particulates containing 

numerous chemicals. Usage of diesel engines by various industries is increasing because of 

fuel efficiency. However, diesel engines emit 30–100 times more particulate matter (PM) 

than gasoline engines. The environmental health concerns for DEP stem from their 

substantial levels in urban and industrial areas as a major component of airborne PM, and 

the fact that epidemiological studies have demonstrated an association between exposures to 

PM and increased respiratory mortality and morbidity (Dockery et al., 1993).

Animal studies have shown that both the organic and the particulate components of DEP 

cause oxidant lung injury but trigger different cellular responses (Ma and Ma, 2002). Long-

term exposure to DEP has been shown to induce tumor formation in rodents (Mauderly et 

al., 1987). Acute exposure to DEP induces pulmonary inflammation, activates alveolar 

macrophages (AMs), and alters the pulmonary immune/inflammatory responses to 

environmental allergens and bacterial infections (Dong et al., 2005; Yang et al., 1999, 2001; 

Yin et al., 2004). DEP is known to induce a change in pulmonary immune response that 

weakens the innate and cell-mediated immunity while enhances adaptive immune responses 

(Dong et al., 2005; Yin et al., 2004). Studies have shown that Th2 cytokines promote the 

differentiation of profibrogenic macrophages and the development of fibrotic diseases 

(Wynn, 2004).

With the addition of cerium in diesel fuel, the potential health effects associated with 

exposures to cerium oxide alone and in combination with DEP are not yet clear. This is 

consistent with the general consensus as to the high degree of uncertainty related to the 

environmental and health implications of manufactured-engineered nanomaterials (Cassee et 

al., 2011; Park et al., 2007; EPA, 2009). Cerium is known to induce rare earth 

pneumoconiosis characterized by accumulation of cerium particles (and other rare earth 

particles) in the lungs and lymphoreticular system after prolonged occupational exposure to 

cerium fumes or dust (Pairon et al., 1994, 1995; Porru et al., 2001; Sabbioni et al., 1982; 

Sulotto et al., 1986). Exposure was not quantified in any of these cases. The pathologic 

features of this rare earth pneumoconiosis include interstitial fibrosis, granulomas, and 
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bilateral nodular chest lesions. A common feature in this disease is the accumulation of 

cerium particles in the alveoli and interstitial tissue that persists even decades after exposure 

was ended (Pairon et al., 1994).

A previous study carried out in our laboratory demonstrated that exposure of rats to cerium 

oxide nanoparticles (CeO2) by a single intratracheal instillation induced a sustained dose 

dependent pulmonary inflammatory response through 4 weeks post-exposure (Ma et al., 

2011). At the end of 4 weeks, AM was transformed from the classic activated, inflammatory 

subset of M1 to the alternatively activated or fibrogenic subset M2, with a significant 

increase in arginase-1 expression (Ma et al., 2011). Pulmonary fibrosis was evident in the 

CeO2-exposed lungs at 28 days post-exposure and the presence of CeO2 in the lung tissue 

was demonstrated (Ma et al., 2011; Ma et al., 2012). These studies have also shown that the 

CeO2 exposure not only increased production of the fibrotic cytokine, transforming growth 

factor (TGF)-β 1 and osteopontin (OPN), by AM, but also induced a range of mediators such 

as matrix metalloproteinases (MMPs), i.e., proteolytic enzymes involved in the degradation 

of extracellular matrix (ECM) collagens, and tissue inhibitor for MMP (TIMP), involved in 

the lung tissue remodeling. The imbalance of MMP-9/TIMP-1 may play an important role in 

the development of fibrosis.

Both CeO2 and DEP caused severe lung injury. However, they exhibited different effects on 

pulmonary cellular responses. DEP exposure induced acute pulmonary inflammation that 

recovered with time, but a strong effect on lymphocyte differentiation that significantly 

suppressed the pulmonary self-defense capability against bacterial infection (Chan et al., 

1981; Yin et al., 2002, 2003). In contrast, CeO2 induced sustained inflammatory responses, 

which led to lung fibrosis. The presence of CeO2 in diesel exhaust emissions, thus, may 

represent a serious occupational and environmental health risk with pulmonary fibrosis as a 

plausible end point. The objective of the current study is to characterize the effects of the 

presence of CeO2 in DEP on pulmonary responses, including modification of DEP-induced 

cellular responses and lung fibrosis. Specifically, the present study investigates the 

combination exposure of DEP plus CeO2 on lung inflammation and injury; lymphocyte 

responses and pulmonary defense capability; and development of fibrotic lung lesions.

Materials and methods

Materials

Specific pathogen-free male Sprague–Dawley (Hla:SD-CVF) rats (6 weeks old, ~200 g) 

were purchased from Hilltop Laboratories (Scottdale, PA). Rats were kept in cages 

individually ventilated with HEPA-filtered air, housed in an American Association for 

Accreditation of Laboratory Animal Care (AAALAC)-approved facility and provided food 

and water ad libitum. A standardized DEP sample (standard reference material 2975) was 

purchased from the National Institute of Standards and Technology (Gaithersburg, MD). 

Cerium oxide nanoparticles, 10 wt.% in water, were obtained from Sigma-Aldrich (St Louis, 

MO, USA).
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Particle preparation

To prepare particle suspension, DEP, CeO2 or DEP + CeO2 was suspended in sterile saline 

then sonicated for 1 min using an ultrasonic processor (Heat System-Ultrasonics, Plainview, 

NY, USA). Particle suspension was prepared immediately before usage and was vigorously 

vortexed to provide well mixed suspension immediately before each instillation, it occurred 

less than 1 min later. In this practice, we did not experience the separation of the particles in 

the suspension. However, if one lets the suspension stand alone for some time the particles 

would separate out in the suspension. That was the reason for vortexing of the sonicated 

suspension.

Animal exposures

All rats were exposed and sacrificed according to a standardized experimental protocol that 

complied with the Guide for the Care and Use of Laboratory Animals and was approved by 

the National Institute for Occupational Safety and Health Animal Care and Use Committee. 

Animals were used after a 1 week acclimatization period. For particle exposure, rats were 

anesthetized with sodium methohexital (35 mg/kg, i.p.) and placed on an inclined restraint 

board. Rats were exposed to 0.3 ml suspensions of cerium oxide at a final concentration of 

0.15, 0.5, 1, 3.5 or 7 mg/kg body weight, DEP (35 mg/kg), or CeO2 + DEP via a single 

intratracheal instillation. Saline (0.9% NaCl) was administered to control rats. The treated 

animals (at least six in each treatment group) were sacrificed at 1, 3, 10 or 28 days post-

exposure.

Particle characterization

The primary particle size and size of the particles as instilled have been characterized 

previously. The diameter of the primary CeO2 particle is in the range of 6.4–14.8 nm with a 

mean of 9.26 ± 0.58 nm, determined by field emission scanning electron microscopy 

(FESEM). The diameter of primary particle was also determined to be in the range of 6.25–

17.5 nm with a mean diameter of 10.14 ± 0.76 nm using transmission electron microscopy 

(TEM) (Nalabotu et al., 2011). We have also reported previously dynamic light scattering 

(DLS) of nanoparticles as diluted in saline for intratraceal instillation. These particles 

agglomerate in saline, with DLS showing a major particle peak at 2.5 μm and a small 

subpopulation with average size of 0.3 μm (Ma et al., 2011). The surface area of the 

particles used is in the range of 80–100 m2/g using BET (Sigma Chemicals). The purity of 

the CeO2 samples used in this study has been determined previously (Park et al., 2007; 

Yokel et al., 2009). The sum of the contamination from lead, aluminum, copper, titanium, 

iron, nickel and zinc was <0.2% of the Ce concentration according to ICP-MS analysis.

Isolation of bronchoalveolar lavage fluid and AM

Animals were anesthetized with sodium pentobarbital (0.2 g/kg, i.p.) and exsanguinated by 

cutting the renal artery. AM was obtained by bronchoalveolar lavage (BAL) with a Ca++ and 

Mg++-free phosphate-buffered medium (145 mM NaCl, 5 mM KCl, 1.9 mM NaH2PO4, 9.35 

mM Na2HPO4, and 5.5 mM glucose; pH 7.4) as described previously (Yang et al., 2001). 

Briefly, the lungs were lavaged with 6 ml Ca++ and Mg++-free phosphate-buffered medium 

in and out twice for the first lavage, and subsequently lavaged with 8 ml of the same buffer 
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for a total of 10 times or when ~ total 80 ml BAL fluid (BALF) was collected from each rat. 

The acellular supernate from the first lavage was saved separately from subsequent lavages 

for further analysis. Cell pellets from each animal were combined, washed, and resuspended 

in a HEPES-buffered medium (145 mM NaCl, 5 mM KCl, 10 mM HEPES, 5.5 mM glucose, 

and 1.0 mM CaCl2; pH 7.4). Cell counts and purity were measured using an electronic cell 

counter equipped with a cell sizing attachment (Coulter model Multisizer II with a 256C 

channelizer; Beckman Coulter, Fullerton, CA).

AM cultures

AM-enriched cells were obtained by adherence of lavaged cells to a tissue culture plate as 

described previously (Yang et al., 1999). AM was cultured in fresh Eagle minimum essential 

medium (EMEM, Lonza BioWhittaker, Walkersville, MD) containing 2 mM glutamine, 100 

μg/ml streptomycin, 100 U/ml penicillin, 5 mM HEPES, and 10% heat-inactivated FBS 

(except for measuring TGF-β1 then only 1% heat-inactivated FBS was used) in the absence 

or presence of ex vivo lipopolysaccharide (LPS, 0.1 μg/ml) for an additional 24 h. AM-

conditioned media were collected and centrifuged, and the supernates were saved in aliquots 

at −80 °C for further analysis of cytokines.

Lactate dehydrogenase (LDH), albumin content and chemiluminescence (CL)

The acellular LDH activity in the first BAL fluid was measured in fresh samples using 

Roche Diagnostic reagents and procedures (Roche Diagnostic Systems, Indianapolis, IN) on 

an automated Cobas C111 analyzer (Roche Diagnostic Systems). The albumin content in the 

first BAL fluid was measured based on albumin binding to bromocresol green with Roche 

Diagnostic reagents and procedures following the manufacturer’s protocol.

Luminol-dependent CL, a measure of reactive oxygen species (ROS) formation, was 

monitored using a Berthold LB953 Luminometer (Berthold, Wildbad, Germany). CL 

generated by BAL cells (1 × 106 AM/ml) was measured before and after stimulation with 

unopsonized zymosan (2 mg/ml final concentration; Sigma Chemical Company, St. Louis, 

MO), a yeast cell wall that stimulates macrophages. The results were presented as total 

counts/15 min/106 AM. Zymosan-stimulated CL was calculated as the total counts in the 

presence of stimulant minus the corresponding basal counts as described by Park et al. 

(2007) and Yang et al. (2001).

Isolation of lung-associated lymphocyte, immunophenotyping and flow cytometry

Lung-associated lymph nodes were harvested, and suspended in 1 ml of EMEM without 

phenol red containing 2 mM glutamine, 100 μg/ml streptomycin, 100 U/ml penicillin, 5 mM 

HEPES and 10% heat-inactivated FBS (Sigma). Lymph nodes were gently homogenized 

using a tissue grinder with Teflon fluorocarbon resin and stainless-steel shaft pestle (Fisher 

Scientific, Pittsburgh, PA) to release lymphocytes into the medium. Total number of 

lymphocytes was determined using a Coulter Multisizer II.

Immunophenotyping was performed on lymphocyte suspensions via flow cytometry. 

Briefly, 100 μl of a blocking buffer containing 300 μg/ml mouse IgG was added to 50 μl of 

lymphocyte suspensions (~0.5 × 106 cells) for 10 min. Anti-CD3 and anti-CD45R were used 
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for T and B cell enumeration, respectively. 7-Aminoactinomycin D (7-AAD) and the 

monoclonal antibodies, anti-CD3, anti-CD4, anti-CD8a, anti-CD45R and NKR-P1A (Becton 

Dickinson, San Diego, CA) for different cell membrane surface markers, were prepared in 

FACS buffer (PBS with 0.2% BSA and 0.09% NaN3) and added to above lymphocyte 

suspension for 30 min on ice. Samples were centrifuged and washed once with 1 ml FACS 

buffer to remove free antibody. The cells were then fixed with 1% paraformaldehyde (final 

concentration) and analyzed on FACSCalibur (Flow Cytomter, BD Biosciences 

Immunocytometry Systems, San Jose, CA). Two panels, each panel consists of 3 or 4 colors, 

were setup for immunophenotyping: CD45R-FITC/CD3-PE/7-AAD and CD4-FITC/NKR-

P1A-PE/CD8-PerCP/CD3-APC. The viability of lymphocytes was identified by 7-AAD 

staining. The subsets of live lymphocytes were selected based on forward scatter and side 

scatter light signal intensity, which was set to exclude dead cells and contaminating red 

blood cells, which are smaller than live lymphocytes. A total of 10,000 events were 

collected for each sample. The absolute numbers of cells in each lymphocyte subpopulation 

were calculated by multiplying the total number of viable cells by the percentage of the total 

within each phenotype, determined by flow cytometry.

Lymphocytes (4 × 106/ml) were suspended in EMEM containing 2 mM glutamine, 100 

μg/ml streptomycin, 100 U/ml penicillin, 5 mM HEPES, and 10% heat-inactivated FBS, and 

incubated in a humidified incubator (37 °C and 5% CO2) for 24 h with or without 

Concanavalin A (ConA, 5.5 μg/ml) (Sigma Chemical Co.) as described preciously (Yin et 

al., 2003). The lymphocyte-conditioned media were collected and centrifuged (1200 × g for 

4 min), and aliquots of the supernates were stored at −80 °C until assayed.

Measurement of soluble mediators, hydroxyproline, and phospholipids

IL-6, IL-10 and IFN-γ—The amounts of IL-6 and IL-10 produced by AM with or without 

ex vivo LPS challenge and IL-6, IL-10 and IFN-γ produced by lymphocytes with or without 

Concanavalin A (ConA) stimulation in cell culture medium were quantified by using the 

Cytometric Bead Array (CBA, BD Biosciences, Sparks, Maryland), bead-based 

immunoassays according to the manufacturer’s instructions.

IL-12 and TGF-β1—IL-12 and TGF-β1 in AM-conditioned media were determined using 

enzyme-linked immunosorbent assays (ELISA), obtained from Biosource International, Inc. 

(Camarillo, CA) and from R&D Systems (Minneapolis, MN), respectively, according to the 

manufacturers’ protocol.

Matrix metalloproteinase (MMP)-9 and tissue inhibitors of metalloproteinase 
(TIMP)-1—The levels of MMP-9 and TIMP-1 were determined in the first BALF, using 

ELISA kits from Cusabio Biotech Co., Ltd. (Wuhan, Hubei, China) and R&D Systems Inc. 

(Minneapolis, MN), respectively, following the manufactures’ protocols.

Determination of MMP-9 activity—Electrophoresis was used to determine the 

gelatinase, MMP-9, activity in the first BALF. BALF samples of 15 μg of protein were 

loaded onto 10% Novex Zymogram (Gelatinase) gels (Life Technologies, Grand Island, 

NY), according to the manufacture’s instruction. Briefly, after electrophoresis, gels were 
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incubate in renaturing buffer, washed with developing buffer and incubated with developing 

buffer overnight for maximum sensitivity. The gels were then stained in Coomassie brilliant 

blue and destained in methanol–acetic acid–water until clear bands of enzymatic activity 

were at optimal contrast from the blue staining gelatin background. Molecular weight 

standards were run on each gel. Gel intensity was determined using ImageQuant 5.1 (Life 

Technologies).

Phospholipids—Total phospholipids in BAL fluid were measured as the inorganic 

phosphorus present in the lipid extracts, which was extracted using chloroform–methanol 

(2:1, v/v) as described previously (Bartlett, 1959). Phospholipid content was obtained by 

multiplying lipid phosphorus values by 25 (Oyarzun and Clements, 1978).

Hydroxyproline determination—The formation of collagen in the lungs was analyzed 

by measurement of hydroxyproline content in the lung tissues. Rat lungs were chopped and 

hydrolyzed in 6 N HCl for 48–72 h at 110 °C. Hydroxyproline was determined according to 

the method of Witschi et al. (1985).

Transmission electron microscope (TEM) and field emission scanning 
electron microscopy (FESEM)—AM ultrastructure was analyzed by TEM. BAL cell 

pellets were fixed in Karnovsky’s fixative (2.5% glutaraldehyde + 3% paraformaldehyde in 

0.1 M sodium cacodylate, pH 7.4) and postfixed with osmium tetroxide. Cells were 

dehydrated in graded alcohol solutions and propylene oxide and embedded in LX-112 

(Ladd, Williston, VT). Ultrathin sections were stained with uranyl acetate and lead citrate 

and examined with a TEM (JEOL 1220, Tokyo, Japan).

For FESEM, 8 μm thick paraffin sections were cut and deparaffinized. After sputter coating, 

the specimens were examined with a Hitachi Model S-4800 field emission scanning electron 

microscope at between 5 and 20 kV.

Histological examination—Rat lung tissues from different exposure groups were fixed 

immediately after sacrifice by intratracheal instillation of 10% neutral buffered formalin at a 

pressure of 30 cm H2O (at an altitude of 960 ft), embedded in paraffin, and stained with 

hematoxylin and eosin for light microscopic examinations. The tracheobronchial lymph 

node at the base of the tracheal bifurcation was also removed, preserved by fixative and 

processed for observation by enhanced darkeld microscopy.

Enhanced darkfield imaging—CeO2 and DEP particles were imaged in the lung tissue 

and lymph nodes using a high signal-to-noise, darkfield-based illumination on an Olympus 

BX-41 microscope (CytoViva, Auburn, AL) at 100× oil immersion. Nanoparticles, such as 

CeO2 and DEP, have dimensions less than the wavelength of light, have closely packed 

atoms, and a refractive index significantly different from that of biologic tissues and/or 

mounting medium. These characteristics produce significantly greater scattering of light by 

nanoparticles than by the surrounding tissues. The enhanced-darkfield optical system images 

light scattered in the section and, thus, CeO2 and DEP stand-out from the surrounding 

tissues with high contrast. For enhanced darkfield imaging, sections (5 μm thick) were 
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collected on ultrasonically cleaned, laser cut slides (Schott North America, Inc, Elmsford, 

N.Y. 10523) to avoid contamination from the ground edges of traditional slides.

Sirius Red staining for collagen detection—Collagen in the lungs was detected with 

Sirius Red staining (Junqueira et al., 1979), a quantitative morphometric method for 

collagen determination in the lungs (Antonini et al., 2000; Malkusch et al., 1995). Paraffin 

sections were deparaffinized and rehydrated with xylene–alcohol series to distilled water. 

The slides were then stained with 0.1% Picrosirius solution (100 mg of Sirius Red F3BA in 

100 ml of saturated aqueous picric acid, pH 2) for 1–2 h, washed for 1 min in 0.01 N HCl, 

counterstained with Mayer’s hematoxylin for 2 min, dehydrated, and mounted with a 

coverslip.

Quantitative morphometric analysis—Quantitative morphometric methods were used 

to measure the average thickness of the fibrillar collagen in the alveolar wall and the extent 

of collagen formation in the alveolar region, details were described previously (Ma et al., 

2012). Volume and surface density were measured using standard morphometric analyses 

(Underwood, 1970), which consisted of basic point and intercept counting. Volume density 

was determined from counting the number of points over the appropriate structures in a 

section relative to total alveolar region points.

Statistical analysis—Data are presented as means ± standard errors. Comparisons were 

made using analysis of variance (ANOVA) with means testing by Dunnett’s test to compare 

treatment groups to control or by Tukey–Kramer test to compare all groups. A p ≤ 0.05 was 

considered to be significant.

Results

Particle characterization

Fig. 1 shows the micrographs of the samples of DEP, CeO2, or their combination used in the 

exposures under FESEM. DEP particles exhibited typical clumps of material that were 38 ± 

3 nm in diameter. The much smaller CeO2 particles with a primary diameter of 8.3 ± 0.7 nm 

tended to form agglomerates. A sample of the combined DEP and CeO2 particles used in 

exposures shows small clumps of CeO2 on the larger DEP agglomerates. Deposition of DEP 

and CeO2 agglomerates on the alveolar epithelial surface at 28 days post-exposure was also 

demonstrated. It is worth noting the results show that DEP and CeO2 particles are co-

localized. It appears that these two particles are together and not separated.

Particles induced inflammation, lung damage and ROS generation

At one day after exposure of rats to DEP (35 mg/kg), there was a significant increase influx 

of PMN, LDH activity and albumin leakage into air space, which are the markers for 

inflammation, cytotoxicity and air/capillary leakage, respectively (Fig. 2). DEP-induced 

inflammation and injury significantly declined to the control level at 28 days post-exposure, 

suggesting DEP-induced acute effects on lung inflammation and injury. In comparison, both 

CeO2 and DEP + CeO2 exposures significantly not only increased inflammation and injury 

at 1 day after exposure, but the effects also persisted throughout 28 days exposure period. 
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The inflammatory responses and lung damage caused by combined exposure of DEP + 

CeO2 did not exceed the sum of the individual effects of DEP alone plus CeO2 alone.

Both DEP and CeO2 activated AM for ROS generation in response to zymosan stimulation 

measured by chemiluminescence (CL) generation at 1 day after exposure (Fig. 2D), which 

was signiflcantly reduced at 28 days post-exposure. At 1 day post-DEP + CeO2-exposed 

AM-generated ROS was less than the sum of DEP alone and CeO2 alone. However, at 28 

days post-DEP + CeO2-exposed AM generated ROS level similar to the sum of CL induced 

by the individual particle exposures.

Particle induced cytokine production by AM and acellular mediators

Exposure of rats to DEP or CeO2, but not DEP + CeO2, induced inflammatory cytokine 

IL-12 production by AM at 1 day after exposure (Fig. 3A), with or without ex vivo LPS 

challenge. The results also show that CeO2-induced IL-12 secretion (6-fold of control) to a 

significantly greater extent than DEP-induced IL-12 at 2-fold of control.

Among all particle treatment groups, only DEP exposure induced production of IL-6 (Fig. 

3B), a cytokine which plays a key role in lymphocyte proliferation and the switch of 

immune response from Th1 to Th2 as previously reported by Yin et al. (2003). However, in 

response to ex vivo LPS stimulation all particle-exposed AM secreted markedly elevated 

IL-6 at 40-, 34- and 10-fold of control for DEP-, DEP + CeO2, and CeO2, respectively. 

These results suggest that AMs were primed for altered immune responses, and that DEP 

played a role in eliciting a Th2 immunity.

Fig. 3C shows that none of the particle exposures induced anti-inflammatory cytokine, 

IL-10, secretion by resting AM. In contrast, after ex vivo LPS challenge, DEP-, and DEP + 

CeO2, and CeO2, -exposed AM produced significantly increased IL-10 at 27-, 20- and 6-fold 

of control, respectively. These results demonstrate that CeO2 is the primary effector on AM 

production of IL-12. However, the production of IL-12, IL-10 and IL-6, after DEP + CeO2 

did not exceed the sum of DEP alone plus CeO2 alone.

The temporal production of the fibrogenic cytokine, TGF-β1, by particle-exposed AM is 

shown in Fig. 3D. CeO2- and DEP + CeO2-exposed AM produced significantly higher 

levels of TGF-β1 than the control at 3 days post-exposure, and this increase was declined to 

the control level at 10 days post-exposure. DEP alone did not induce AM production of 

TGF-β1 or significantly affect CeO2-induced TGF-β1 secretion.

The presence of MMP-9, a proteolytic enzyme, responsible for lung collagen degradation, 

and TIMP-1, an antiproteolytic enzyme that binds to MMP-9 to inactivate the enzyme, in the 

first BALF at 1 day after exposure is shown in Fig. 4. The results show that all particle 

exposure increased MMP-9 and TIMP-1 levels when compared to the controls, and there is a 

great excess of induced TIMP-1 compared to MMP-9. DEP-, DEP + CeO2- or CeO2-

induced MMP-9 levels were 3.3-, 3.5 and 1.7-fold of the control, respectively, indicating 

that DEP and DEP + CeO2 exposure induced significantly higher levels of MMP-9 than the 

CeO2 group. However, the particle induced MMP-9 activity (Figs. 4C and D) was CeO2 > 

DEP + CeO2 > DEP with activity level at enhanced 8-, 4.5- and 2-fold of control, 
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respectively, with the control showing minimum activity. These results suggest that 

increased MMP-9 activity is primarily associated with CeO2 exposure.

Effects of DEP and/or CeO2 exposures on lymphocyte subpopulation in LDLN

The numbers of total lymphocytes and all the subpopulation of lymphocytes isolated from 

all exposure groups at 3 days post-exposure are given in Table 1. The results show that all 

particle exposures significantly increased total number of lymphocytes, T and T-cell subsets, 

NKT cells and B cells, when compared to the saline controls. CeO2 induced total 

lymphocytes was significantly higher than the control, but lower than DEP-exposed groups. 

The CD4+/CD8+ ratio for all particle-exposed groups was significantly reduced in 

comparison to the control, which may attribute to a slightly reduced percentage of CD4+ in 

total cells for the exposed groups (DEP, 51%; CeO2, 50%; DEP + CeO2, 53%; control, 

59%) and a significant increase in the percentage of CD8+ cells for the exposed groups 

(DEP, 40%; CeO2, 42%; DEP + CeO2-, 42%; control; 34%) as compared to the control. The 

increase in lymphocytes and T cell subsets by DEP + CeO2 exposure is not markedly 

different from that of the DEP exposure, which is lower than the sum of individual particle 

effects, suggesting that CeO2 has little effect on DEP-modulated lymphocyte proliferation.

Effects of DEP and CeO2 exposures on lymphocyte cytokine production

The lymphocyte-mediated immune responses were assessed by monitoring cellular 

production of cytokines in response to ConA stimulation. Fig. 5 shows that lymphocytes 

were primed by all particle exposures, DEP, CeO2, and DEP + CeO2, to produce 

significantly elevated IFN-γ production in response to ConA stimulation. However, ConA-

stimulated IL-10 production was only associated with DEP-and DEP + CeO2-, but not 

CeO2-exposed groups. These results suggest that both DEP and CeO2 induced lymphocyte 

production of the inflammatory cytokine (IFN-γ), whereas DEP plays major role in 

activating anti-inflammatory responses in lymphocyte (IL-10).

Phospholipidosis characterization

TEM shows that numerous vacuoles and lamella bodies were detected in AM isolated from 

rats exposed to DEP (35 mg/kg) + CeO2 (3.5 mg/kg)- and CeO2-exposed AM, but not DEP 

at 10 days post-exposure (Fig. 6). The phospholipid (PL) content in the BAL fluid of DEP-

exposed lungs was not significantly different from the saline control. However, there was a 

significant increase of PL in the DEP + CeO2-and CeO2-exposed lung when compared to the 

controls at 28 days postexposure, suggesting that CeO2 is responsible for accumulation of 

phospholipids in the lung.

The presence of particles in the lung and lymph nodes

The distribution of particles within the lung tissues was readily demonstrated using the 

enhanced darkfield imaging system. At 28 days after exposure of rats to CeO2 or DEP + 

CeO2, illuminated CeO2 particles were detected mainly in AM, the interstitium and in the 

airspace as clumps mixed with phospholipids of lung surfactant. No particles were detected 

in control lung tissues (Fig. 7A). Fig. 7B shows the stained (H&E) sections of the 

tracheobronchial lymph nodes in saline, CeO2-, DEP + CeO2- and DEP-exposed lungs. 
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CeO2 was distributed in clumped regions approximately 10–15 μm diameter in the lymph 

nodes of CeO2 exposed lungs. DEP particles in the lymph nodes of DEP only exposed lungs 

were generally found in isolated dense clumps approximately 2 μm in diameter. As 

illustrated in Fig. 7B, the particles in the lymph nodes of DEP + CeO2 exposed lungs were 

substantially greater than either the CeO2- or DEP-exposed lungs with dense clumps being 

nearly continuous throughout the lymph node.

Pulmonary fibrosis

Hydroxyproline content, a specific marker for collagen, was determined in the lung tissues 

collected at 28 days post-exposure to DEP (35 mg/kg) in the absence or presence of CeO2 (7 

mg/kg) as shown in Fig. 8A. The results show a significant increase in pulmonary 

hydroxyproline content in rats exposed to DEP, CeO2 or DEP + CeO2.

Histopathological analysis showed that the light micrographs of DEP (35 mg/kg)-exposed 

lungs, at 28 days post-exposure demonstrate granulomatous lesions with some collagen fiber 

(Fig. 8B), whereas CeO2 (7 mg/kg)-exposed lungs exhibited large acellular clumps of 

material (open arrow) with significant alveolar interstitial collagen formation (arrow). Fig. 

8B shows that the granulomatous lesions of DEP-exposed lungs have far less collagen, 

fewer cells, and the DEP particles are much more densely distributed when compared to 

DEP + CeO2-exposed lungs. The granulomatous tissue formation was 7.9 ± 2.4% and 9.7 ± 

3.1% of all alveolar tissue volume in DEP and DEP + CeO2 groups, respectively. 

Quantitative morphometric analysis of the average thickness of the alveolar wall and the 

extent of collagen formation showed that the alveolar wall thickness (Fig. 8C), excluding 

additional tissue formation in areas of granulomatous lesions, was significantly increased in 

the DEP, CeO2, and DEP + CeO2 groups by 20, 22, and 26%, respectively, over the 

controls.

In detecting alveolar collagen formation via Sirius Red staining, histological analysis shows 

significant elevated level of collagen in CeO2-, DEP- or DEP + CeO2-exposed lungs. The 

alveolar wall collagen fiber volume was increased by more than two fold over the control 

(Fig. 8D), suggesting that both DEP (at high exposure doses) and CeO2 are fibrotic agents. 

The collagen level after DEP + CeO2 was approximately the sum of the individual exposure.

Discussion

Exposure to DEP has been shown to cause acute lung inflammation and exacerbate the 

innate and cell-mediated immune responses to bacterial infection in short term exposures 

(Harrod et al., 2005; Yin et al., 2003). Previously, we have also demonstrated that CeO2 

nanoparticles induce a sustained inflammatory response which leads to pulmonary fibrosis 

(Ma et al., 2011, 2012; Park et al., 2007). Exposure to the combination of DEP and CeO2 

can result from using fuel additives containing cerium, since generated CeO2 nanoparticles 

in exhaust have been reported. Thus, exposure to DEP + CeO2 presents a complex and 

largely unknown health concern. The present study was carried out to examine the effects of 

the mixture of DEP and CeO2 exposure on lung injury and the development of pulmonary 

diseases.
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Exposure of rats to 35 mg/kg DEP seems a high concentration, however, in the rat 35 mg/kg 

DEP would be 8.7 mg/rat lung. The alveolar epithelial surface area of a human lung is 102 

m2, while that of the rat is 0.4 m2 (Stone et al., 1992). Therefore, the alveolar surface area of 

the human lung is 255 times than that of the rat and an equivalent lung burden in a human 

would be 2.2 g/lung. According to the EPA estimates, the mean air concentration of DEP 

nationwide is 2.6 μg/ml. But in certain non-occupational settings such as in bus stops, the air 

concentration can be considerably higher. In fact, in the Los Angeles Basin, one estimate has 

placed the rate of DEP intake at 300 μg per 1–3 days (Diaz-Sanchez, 1997). Using a 25% 

deposition rate for humans, one can arrive at a value of 75 μg for the daily deposit. 

However, in the occupational settings, the air concentration of DEP can be considerably 

higher. The Department of Labor reported, as high as 2–3 mg/m3 of DEP were found in 

underground mining operations. Using a minute ventilation value of 20 l/min, a 25% 

deposition for human (Valberg and Watson, 1996), and an air concentration of 1 mg/m3, the 

daily (8-hour exposure) deposit of DEP would be 2400 μg. Therefore, a lung burden of 2.2 g 

could be attained in 3.6 years of underground mining in operations using diesel engines. We 

would like to point out, that the DEP dose used in the current study yielded lung deposits 

that is within the range of possible DEP intake.

The projected human pulmonary dose for inhalation of CeO2 in diesel exhaust from engines 

using a CeO2 fuel additive is 0.09 μg/kg body weight for 8 h (Health Effects Institute [HEI], 

2001). CeO2 is insoluble particle, and studies have shown that the clearance of CeO2 from 

the lung may take 20 years or more (Pairon et al., 1994). As a diesel exhaust product, it is 

likely that the potential exposure to CeO2 is continuous and the lung burden is cumulative.

A limited number of short-term diesel engine tests have confirmed that cerium (20 to 100 

ppm in the fuel) used with the particulate filter substantially decreases both particle mass 

(>90%) and number (99%) concentrations in the exhaust (HEI, 2001). Despite the filter’s 

high efficiency in trapping particulate matter (PM), however, a small amount of cerium is 

emitted in the particulate phase of the exhaust and mainly in the oxide form and in particles 

less than 0.5 μm in diameter. Cerium mass relative to the total particle mass was between 

3% and 18% based on two tests using two different types of filters. According to HEI (2001) 

report, doses of CeO2 were chosen at 3, 10 or to 20% of DEP in the present study.

In the present study, as demonstrated by FESEM, small clumps of CeO2 on the larger DEP 

agglomerates were identified in lungs after mixed particle exposure. The persistence of 

particles in the lung was demonstrated, since DEP and CeO2 agglomerate were detected on 

alveolar epithelial surface of the DEP + CeO2-exposed lungs at 28 days post-exposure.

The localization of CeO2 in the lung tissues, at 28 days post-exposure, as the dark field 

illuminated CeO2 particles was detected in AM, the interstitium, and the airspace that was 

mixed with lung surfactant of DEP + CeO2- and CeO2-exposed lungs. These results show 

that DEP and CeO2 are co-localized in the lung tissues and may direct stimulation of cells 

by both particles.

The dark field illuminated CeO2 particles were also detected in the lymph nodes, at 28 days 

post-exposure; suggesting translocation of the particles from the alveolar region into the 
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local lymphoid system. Similar translocation of DEP from the lungs to lymph nodes was 

also observed and has been previously reported (Chan et al., 1981; Yu and Yoon, 1991), 

indicating that lymphatic system was involved in the removal of these particles from the 

pulmonary airways. Studies have shown that occupational exposure of workers for many 

years to rare earth-containing fumes and/or dusts resulted in high rare earth concentrations in 

the worker’s pulmonary and lymph node systems. These particles were detected in the 

worker’s lung even at about two decades after their retirement from work (Sulotto et al., 

1986), and resulted in the development of pulmonary fibrosis (Gong, 1996; McDonald et al., 

1995; Vocaturo et al., 1983; Waring and Watling, 1990). The findings from our studies 

demonstrate that particles exist in the lung and lymph nodes after a single intratracheal 

instillation of DEP and/or CeO2 particles, which parallel the findings of the rare earth dust in 

the workers’ lung.

Direct stimulatory effects of DEP and CeO2 on cellular responses have been demonstrated 

as activation of cell secretion of pro- and anti-inflammatory cytokines. Exposure to DEP has 

been shown to increase the susceptibility of the lung to bacterial infection in rats (Ma et al., 

2012; Yang et al., 2001; Yin et al., 2002) through enhanced AM production of anti-

inflammatory cytokine, IL-10, which prolongs bacteria survival in AM (Ma et al., 2012; 

Yang et al., 1999; Yin et al., 2002, 2005, 2007). The present study shows that DEP 

stimulated AM production of IL-12 and IL-6, which is known to induce B-cell 

differentiation, regulates the acute-phase responses to injury (Kishimoto, 2005; Mihara et 

al., 2012) and the activation of T cells (Lotz et al. 1988). In addition, DEP also stimulated 

AM production of IL-10 in response to ex vivo LPS stimulation. On the other hand, lower 

concentration of CeO2 up-regulates IL-12 production by AM, both at basal or in response to 

ex vivo LPS challenge, is significantly higher than DEP, and suggests that CeO2 plays a 

major role in particle-induced inflammation. The gross effects of these particles are such 

that DEP causes a switch of the pulmonary immune response from Th1 to Th2, while CeO2 

induces a sustained inflammatory response in the lungs, switching AM function from the 

classical inflammatory subset M1 to the fibrotic subset of M2 at 4 weeks exposure time (Ma 

et al., 2011; Park et al., 2007). In the mixed exposures to DEP and CeO2, where both 

particles are co-localized, the present study shows that exposure of rats to DEP and/or CeO2 

at 1 day post-exposure significantly increased proinflammatory cytokine, IL-12, production 

by AM basally or in response to ex vivo LPS stimulation in the following potency order: 

CeO2 ≫DEP > DEP + CeO2 ~ control. These findings suggest that DEP + CeO2 exposure 

induced lung inflammation is in much reduced level when compared to CeO2-exposed rats. 

In contrast, particle-exposed AM when challenged with ex vivo LPS, significantly increased 

anti-inflammatory cytokine, IL-10, secretion in potency orders of DEP ~ DEP + CeO2 

≫CeO2 ~ control. These results demonstrated that the combined exposure induced anti-

inflammatory response is similar to DEP-induced effects, which is much higher than CeO2. 

These findings clearly demonstrate that CeO2 is a major effector for the inflammatory 

responses in the lung, while DEP, but not CeO2, dominates the induction of anti-

inflammatory cytokine production in response to LPS challenge. These findings show that 

the combined particle exposure diminished any single particle-induced inflammatory 

cytokine production, but that anti-inflammatory cytokine secretion is similar to the DEP 

level.
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While DEP strongly modulated the immune responses in the lung, the effects of CeO2 on the 

pulmonary immune system have not been investigated in detail. The present study showed 

that DEP and DEP + CeO2 exposures induced a 4-fold increase in total lymphocyte counts 

in comparison to the controls. CeO2 exposure alone resulted in a two-fold induction of 

pulmonary lymphocytes, suggesting that DEP is the major effector for lymph nodes immune 

responses in the mixed particle exposure. The increase in lymphocytes by CeO2 and/or DEP 

was characterized by an increase in CD4+ and CD8+ cells and a decrease in the CD4+/

CD8+ ratio to ~70% of the control, which may due to a greater increase in CD8+ than CD4+ 

cells. Our study further showed that CeO2 and DEP induced different lymphocyte 

populations. Lymphocytes from all particle exposure groups in response to ConA 

stimulation produced increased IFN-γ to the similar level, but the production of IL-10 by 

lymphocytes was only associated with DEP with or without the presence of CeO2, but not 

with CeO2 exposure alone. This suggests that, CeO2 induces a Th1 type cell response, 

whereas DEP-induced not only Th1 but also Th2 type responses. Studies by Park et al. 

(2009) have shown that exposure of mice to CeO2 at a relative high concentration (50 

mg/kg) by intratracheal instillation induced inflammatory responses, activated AM, and 

stimulated naïve T cells to trigger an adaptive immune response. They showed that CeO2 

exposure induced both Th1-type cytokine (IFN-γ and IL-12) and Th2-type cytokine (IL-4, 

IL-5 and IL-10) productions. The high yield of Th2-type cytokines from that study contrasts 

with the results of the current investigation may be due to a difference in animal species 

and/or exposure dose. For the cytokine measurement, our studies were carried out at an 

intratracheal dose of 3.5 mg/kg of CeO2 when compared to 50 mg/kg dose used by Parker et 

al. (2009).

One of the major effects of CeO2 on the exposed lung is the induction of phospholipidosis 

prior to the development of pulmonary fibrosis. Our studies demonstrated that the 

accumulation of lung surfactant, as measured BAL phospholipids, occurs in the lungs of 

DEP + CeO2- and CeO2-, but not DEP-exposed rats. TEM analysis further illustrated 

increased surfactant in the lung as vacuoles and lamellar bodies in and around AM from 

DEP + CeO2- and CeO2-exposed lungs, that is clearly absent in DEP-exposed lungs.

MMP-9 and TIMP-1 represent the proteolytic and antiproteolytic enzymes that control the 

balance between ECM synthesis and degradation of matrix components that is crucial for 

tissue repair (Gueders et al., 2006). MMPs were characterized by their extensive ability to 

degrade ECM proteins including collagens. However, in vivo activity of MMPs is generally 

very low and their transcription is tightly regulated by cytokines including IL-6 and growth 

factors such as TGF-β (Birrell et al., 2006; Papakonstantinou et al., 2003). MMPs can 

proteolytically activate or inactivate these cytokines, in addition some active MMPs can 

activate other proMMPs. However, activated MMPs are further regulated by endogenous 

inhibitors, TIMPs. In general, the concentrations of TIMPs far exceed MMPs in tissue and 

extracellular fiuids to limit MMP proteolytic activity to focal pericellular sites. The present 

study shows that all particle exposure significantly induced MMP-9 and TIMP-1 level with a 

potency of DEP ~ DEP + CeO2 > CeO2 in the first BALF collected at 1 day post-exposure. 

DEP-, DEP + CeO2- or CeO2-induced MMP-9 level by 3.3-, 3.5 and 1.7-fold of control, 

demonstrated that DEP and DEP + CeO2 exposure induced significantly higher level of 

MMP-9 than CeO2 group. In contrast, these same exposures induced MMP-9 activity were 
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in the following decreasing order: CeO2 ≫DEP + CeO2 > DEP at 91-, 18- and 7-fold 

increase, respectively, when compared to the controls. These data show exposure of animals 

to CeO2 induced 2-fold increase of MMP-9 level but with 91-fold increase of its activity, 

suggesting that CeO2-induced most MMP-9 activity in the lung when compared to DEP- or 

DEP + CeO2-exposed lungs. Thus, CeO2 is the major particle responsible for fibrotic lung 

lesions. Indeed, previously, we have reported that exposure of rats to a single intratracheal 

instillation of CeO2 induced pulmonary fibrosis in a dose- and time- dependent manner (Ma 

et al., 2012), and involved enhanced levels of MMP-9 and TIMP-1 in the exposed lungs.

The histopathological features of the lung tissues from DEP + CeO2-exposed animals are 

significantly different from any single particle, DEP- or CeO2-exposed rats. Exposure of rats 

to DEP or DEP + CeO2, but not CeO2, produced aggregations of inflammatory cells 

(principally macrophages), interstitial cells and collagen fibers in the lungs to form 

granulomatous lesions. At 4 weeks after exposure these granulomatous masses generally 

walled off the DEP or DEP + CeO2 particles in the lungs, suggesting that DEP is the particle 

responsible for lung granulomas. Although, CeO2 in the combined exposure did not 

significantly affect DEP-induced lung granuloma, it led to significant accumulation of 

surfactant in the lung. CeO2- or DEP + CeO2-, but not DEP-induced fibrosis is accompanied 

by a significant accumulation of surfactant, as revealed by TEM micrographs and 

manifested by largely increased number of vacuoles and lamellar bodies in and around AM 

in the alveolar spaces. The present study demonstrates that the presence of CeO2 in DEP 

exposure significantly modified DEP-induced lung morphology leading to phospholipidosis 

and lung fibrosis, but did not significantly affect DEP-induced lung granulomas.

Histological analysis has also shown that DEP detected in DEP-exposed lungs, was much 

denser than DEP found in the DEP + CeO2-exposed lungs. These results were consistent 

with the fact that considerably more DEP was removed by bronchoalveolar lavage from the 

combined particle exposure than from DEP-exposed lungs. The reason for the better 

removal of DEP from the lung in the presence of CeO2 is not clear at the present time. 

However, CeO2 induced accumulation of surfactant, which has been shown to decrease the 

agglomeration of nanoparticles (Vaisman et al., 2006). Thus, this increased surfactant may 

play a role as dispersing agent for DEP accelerating the removal rate of these particles.

CeO2 is the major effector for increasing collagen in the lungs after the combined exposure, 

since significantly increased pulmonary hydroxyproline content, a major component of 

collagen, was detected in CeO2- and DEP + CeO2-, but not DEP-exposed lungs. This is 

consistent with previous findings that CeO2 increased lung collagen formation in a dose- 

and time-dependent manner in a rat model (Ma et al., 2012). Morphometric analysis further 

demonstrated that the alveolar wall localization of collagen in DEP + CeO2-exposed lung 

tissues was similar to that in CeO2-exposed lungs.

In summary, CeO2 strongly induces lung collagen formation, excessive accumulation of 

lung surfactants, and cellular mediators involved in the lung tissue remodeling process that 

are not significantly affected by the presence of DEP. In addition, the presence of CeO2 did 

not markedly affect DEP-induced lung granuloma. However, the present study shows that 

CeO2 and DEP exhibit diverse effects on AM and pulmonary lymphocytes. DEP elicits a 
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cellular response characterized by granulomas and enhanced production of anti-

inflammatory cytokines by AM and lymphocytes and weakened host defense against 

bacterial LPS challenge. In contrast, CeO2 strongly induces sustained cellular production of 

inflammatory and fibrotic cytokines and accumulation of lung surfactant and fibrosis. There 

is strong evidence, however, that these particles, through combined exposure, are co-

localized in the lung tissues and are able to elicit multiple responses from lung cells, leading 

to the development of lung injury, granulomas, impairment of cell-mediated immunity, and 

pulmonary fibrosis. This study has also demonstrated that any single particle exposure, 

CeO2 or DEP, induced inflammatory responses in the lung, whereas in the combined 

exposure, DEP + CeO2, which did not lead to lung inflammation, demonstrate that the 

combined exposure to DEP + CeO2 exhibited features that cannot be readily predicted by 

results from either single particle exposure, suggesting more studies are warranted regarding 

the combined effects of DEP and CeO2 on the pulmonary system.

Conclusion

This study shows that CeO2 and DEP nanoparticles induce lung injury and co-localized in 

the lung tissues after combined exposure. CeO2 induced sustained inflammation and 

surfactant accumulation, and altered the balance of mediators involved in tissue repair 

process leading to excess collagen deposit and pulmonary fibrosis. DEP induced acute 

inflammation, activated anti-inflammatory cytokine production by lung cells and suppressed 

the pulmonary defense capability in response to bacterial challenge. However, pulmonary 

responses to the combined exposure of DEP + CeO2 cannot be readily predicted by results 

from either single particle exposure, indicating that CeO2 generated in exhaust emission 

with DEP from diesel engine using cerium fuel additive may pose serious adverse health 

effects. Future studies to elucidate the mechanisms of these toxicological responses to CeO2 

and DEP exposure are warranted.
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Abbreviations

AM alveolar macrophage

Arg-1 arginase-1

BAL bronchial alveolar lavage

CeO2 cerium oxide

ConA Concanavalin A

DEP diesel exhaust particle

ECM extra-cellular matrix

EMT epithelial–mesenchymal transition
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IPF idiopathic pulmonary fibrosis

MMP matrix metalloproteinase

OPN osteopontin

PM particulate matter

PL phospholipids

RE rare earth

ROS reactive oxygen species

TGF transforming growth factor

TIMP tissue inhibitors of matrix metalloproteinase

TEM transmission electron microscopy
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Fig. 1. 
Characterization of particle suspensions used for exposure and the presence of DEP and 

CeO2 on the epithelial surface in the lung. Field emission SEM of CeO2, DEP and DEP + 

CeO2 nanoparticle suspensions and a DEP + CeO2 agglomerate on alveolar epithelial 

surface at 28 days post-exposure (scale bar = 200 nm). +Combined exposure is less than 

DEP alone plus CeO2 alone, p < 0.05.
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Fig. 2. 
Effects of CeO2 on DEP induced lung inflammation, cytotoxicity, air/capillary damage and 

ROS generation by AM. Effects of CeO2 on DEP-induced PMN inflltration, a measure of 

lung inflammation (A), LDH activity, a marker for the cytotoxicity (B), the amount of 

albumin in the first lavage fluid, an indicator for the leakage of air/capillary barrier (C), and 

chemiluminescence generated by AM, a measure of ROS generation (D), are presented. The 

samples were collected at 1 and 28 days post-exposure. *Significantly different from AM 

control; p < 0.05.
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Fig. 3. 
Effects of CeO2 on DEP induced pro- and anti-inflammatory cytokine production by AM 

with or without ex vivo LPS challenge. AMs were isolated at 1 day after exposure by bron-

choalveolar lavage. The productions of IL-12, IL-6 and IL-10 by AM obtained are presented 

in panels A, B and C, respectively. Panel D shows the production of the fibrotic cytokine, 

TGF-β1, by AM, isolated at 3 and 10 days post-exposure. *Significantly different from AM 

control; p < 0.05. +CeO2 is significantly different from DEP; p < 0.05. #CeO2 is significantly 

different from DEP + CeO2, p < 0.05.
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Fig. 4. 
Effects of DEP with or without CeO2 exposure on the induction of MMP-9 and TIMP-1. 

The protein levels of MMP-9 (A) and TIMP-1 (B) in the first BALF collected at 1 day post-

exposure. MMP-9 activity (C and D) in the first BALF from different treatment groups was 

monitored using Zymography. *Significantly different from control; p < 0.05. +CeO2 is 

significantly different from DEP; p < 0.05. #CeO2 is significantly different from DEP + 

CeO2, p < 0.05.
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Fig. 5. 
Effects of CeO2 on DEP-induced cytokine production by lymphocytes in response to ConA 

stimulation. Lymphocytes were isolated at 3 days after exposure. The cytokine IFN-γ and 

IL-10 productions from lymphocytes obtained at 3 days post-exposure are presented. 

*Significantly different from control.
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Fig. 6. 
Effect of DEP with or without CeO2 exposure on phospholipid content in the 1st BALF and 

micrographs of TEM analysis of AM. (A) TEM of AM isolated by bronchoalveolar lavage 

from (A) control, (B) DEP (35 mg/kg)-, (C) DEP with CeO2 (3.5 mg/kg)- and (D) CeO2-

exposed rats at 10 days post-exposure (bar = 2 μm). (E) The phospholipid content in the first 

BALF obtained from saline and various concentrations of CeO2-exposed rats at 28 days 

post-exposure. The values are expressed as means ± SE, n = 6. *Significantly different from 

saline control group at p < 0.05.
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Fig. 7. 
CeO2 particles in the lung tissue and lymph nodes collected from particle-exposed rats, at 28 

days post-exposure. Control lung tissues (A) and lymph nodes (B) exhibit no particles under 

high resolution, dark field illumination. Illuminated CeO2 particles, using enhanced 

darkfield-based illumination, were clearly detected in the macrophages, in the interstitium, 

in the acellular surfactant clumps, and in the airspace of the CeO2 (7 mg/kg)- and DEP (35 

mg/kg) + CeO2-exposed lungs at 28 days after exposure. As shown in the representative 

micrographs, lymph nodes of CeO2-exposed lungs contained isolated clusters of particle 

accumulations. Lymph nodes of DEP-exposed lungs demonstrated isolated, dense clumps of 

particles, while the combined exposure (CeO2 + DEP) resulted in nearly continuous particle 

accumulations throughout the lymph node.
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Fig. 8. 
Effects of DEP-, CeO2- and DEP + CeO2-exposure on hydroxyproline content and Sirius 

Red staining for collagen in the lung tissue and quantitative morphometric analysis of 

alveolar wall thickness and alveolar collagen fiber volume in rat lung tissues. (A) 

Hydroxyproline content in the lung tissue. The values are expressed as means ± SE, n = 6. 

(B) Light micrograph of Sirius Red staining for collagen formation in the lung tissues 

(arrow) at 28 days post-exposure (cerium dose: 7 mg/kg). Acellular surfactant clumps (open 

arrow) were detected in the airspace of the CeO2 (7 mg/kg)- and DEP (35 mg/kg) + CeO2-

exposed lungs. (C) Quantitative analysis of dose-dependent increase in the thickness of 

alveolar wall connective tissue. (D) Quantitative analysis of alveolar collagen volume 

expressed as a percentage of total tissue volume, based on the morphometric analysis of 

Sirius Red stained sections. *Significantly different from saline controls; p < 

0.05. +Significantly different from CeO2 alone or DEP alone groups, at p < 0.05.
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